Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii.

Identifieur interne : 002442 ( Main/Exploration ); précédent : 002441; suivant : 002443

Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii.

Auteurs : Yuepeng Song [République populaire de Chine] ; Qingqing Chen ; Dong Ci ; Deqiang Zhang

Source :

RBID : pubmed:23652820

Descripteurs français

English descriptors

Abstract

KEY MESSAGE

We report global gene expression patterns of poplar in response to chilling stress. A total of 1,085 significantly differentially expressed genes, involved in photosynthesis, signal transduction, and regulation of transcription, were identified. To understand the gene network underlying the response to chilling stress in the poplar, Populus simonii, we determined the genome transcript expression profile using an Affymetrix GeneChip with 56,000 genes. Our results revealed 11,626 cold-responsive genes, with 5,267 upregulated and 6,359 downregulated. In terms of biological processes, gene ontology (GO) analysis indicated that cold-induced genes were enriched in response to temperature stimulus, reactive oxygen species, and hormone stimulus. GO terms including cellular nitrogen compound metabolic processes, photosynthesis, and generation of precursor metabolites and energy were enriched in the cold-repressed genes. The functional annotation of differentially expressed genes revealed genes involved in photosynthesis, calcium/calmodulin-mediated signal transduction, abscisic acid (ABA) homeostasis and transport, and antioxidant defense systems. Gene expression analysis showed that the majority of genes involved in photosynthesis were repressed, but the THF1 gene was induced, suggesting that it may play an important role in the production of vesicles for leaf development under low-temperature conditions. Several genes involved in calcium/calmodulin-mediated signal transduction, ABA homeostasis and transport, and antioxidant defense systems were significantly induced under chilling stress, suggesting that they may act as positive regulators in the enhanced low-temperature tolerance of poplar. Several transcription factors had divergent expression patterns, suggesting they have variable functional responses to abiotic stress. This profile of global gene expression patterns during chilling stress will be valuable for future studies on the molecular mechanisms of chilling tolerance in woody plants.


DOI: 10.1007/s00299-013-1454-x
PubMed: 23652820


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China. forward1985@163.com</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Qingqing" sort="Chen, Qingqing" uniqKey="Chen Q" first="Qingqing" last="Chen">Qingqing Chen</name>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23652820</idno>
<idno type="pmid">23652820</idno>
<idno type="doi">10.1007/s00299-013-1454-x</idno>
<idno type="wicri:Area/Main/Corpus">002609</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002609</idno>
<idno type="wicri:Area/Main/Curation">002609</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002609</idno>
<idno type="wicri:Area/Main/Exploration">002609</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii.</title>
<author>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China. forward1985@163.com</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Qingqing" sort="Chen, Qingqing" uniqKey="Chen Q" first="Qingqing" last="Chen">Qingqing Chen</name>
</author>
<author>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</author>
</analytic>
<series>
<title level="j">Plant cell reports</title>
<idno type="eISSN">1432-203X</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cold Temperature (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>Populus (genetics)</term>
<term>Signal Transduction (genetics)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Basse température (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Photosynthèse (génétique)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Photosynthesis</term>
<term>Populus</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Photosynthèse</term>
<term>Populus</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Stress, Physiological</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Basse température</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>KEY MESSAGE</b>
</p>
<p>We report global gene expression patterns of poplar in response to chilling stress. A total of 1,085 significantly differentially expressed genes, involved in photosynthesis, signal transduction, and regulation of transcription, were identified. To understand the gene network underlying the response to chilling stress in the poplar, Populus simonii, we determined the genome transcript expression profile using an Affymetrix GeneChip with 56,000 genes. Our results revealed 11,626 cold-responsive genes, with 5,267 upregulated and 6,359 downregulated. In terms of biological processes, gene ontology (GO) analysis indicated that cold-induced genes were enriched in response to temperature stimulus, reactive oxygen species, and hormone stimulus. GO terms including cellular nitrogen compound metabolic processes, photosynthesis, and generation of precursor metabolites and energy were enriched in the cold-repressed genes. The functional annotation of differentially expressed genes revealed genes involved in photosynthesis, calcium/calmodulin-mediated signal transduction, abscisic acid (ABA) homeostasis and transport, and antioxidant defense systems. Gene expression analysis showed that the majority of genes involved in photosynthesis were repressed, but the THF1 gene was induced, suggesting that it may play an important role in the production of vesicles for leaf development under low-temperature conditions. Several genes involved in calcium/calmodulin-mediated signal transduction, ABA homeostasis and transport, and antioxidant defense systems were significantly induced under chilling stress, suggesting that they may act as positive regulators in the enhanced low-temperature tolerance of poplar. Several transcription factors had divergent expression patterns, suggesting they have variable functional responses to abiotic stress. This profile of global gene expression patterns during chilling stress will be valuable for future studies on the molecular mechanisms of chilling tolerance in woody plants.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23652820</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>02</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-203X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>32</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant cell reports</Title>
<ISOAbbreviation>Plant Cell Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii.</ArticleTitle>
<Pagination>
<MedlinePgn>1407-25</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00299-013-1454-x</ELocationID>
<Abstract>
<AbstractText Label="KEY MESSAGE" NlmCategory="CONCLUSIONS">We report global gene expression patterns of poplar in response to chilling stress. A total of 1,085 significantly differentially expressed genes, involved in photosynthesis, signal transduction, and regulation of transcription, were identified. To understand the gene network underlying the response to chilling stress in the poplar, Populus simonii, we determined the genome transcript expression profile using an Affymetrix GeneChip with 56,000 genes. Our results revealed 11,626 cold-responsive genes, with 5,267 upregulated and 6,359 downregulated. In terms of biological processes, gene ontology (GO) analysis indicated that cold-induced genes were enriched in response to temperature stimulus, reactive oxygen species, and hormone stimulus. GO terms including cellular nitrogen compound metabolic processes, photosynthesis, and generation of precursor metabolites and energy were enriched in the cold-repressed genes. The functional annotation of differentially expressed genes revealed genes involved in photosynthesis, calcium/calmodulin-mediated signal transduction, abscisic acid (ABA) homeostasis and transport, and antioxidant defense systems. Gene expression analysis showed that the majority of genes involved in photosynthesis were repressed, but the THF1 gene was induced, suggesting that it may play an important role in the production of vesicles for leaf development under low-temperature conditions. Several genes involved in calcium/calmodulin-mediated signal transduction, ABA homeostasis and transport, and antioxidant defense systems were significantly induced under chilling stress, suggesting that they may act as positive regulators in the enhanced low-temperature tolerance of poplar. Several transcription factors had divergent expression patterns, suggesting they have variable functional responses to abiotic stress. This profile of global gene expression patterns during chilling stress will be valuable for future studies on the molecular mechanisms of chilling tolerance in woody plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yuepeng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China. forward1985@163.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Qingqing</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ci</LastName>
<ForeName>Dong</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GEO</DataBankName>
<AccessionNumberList>
<AccessionNumber>GSE43872</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Plant Cell Rep</MedlineTA>
<NlmUniqueID>9880970</NlmUniqueID>
<ISSNLinking>0721-7714</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>2</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23652820</ArticleId>
<ArticleId IdType="doi">10.1007/s00299-013-1454-x</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:601-639</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Mar;17(3):287-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10096298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22186608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(4):457-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):81-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1994 Aug 15;244(4):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8078458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21252258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010 Jul 17;10:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20637123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002;14 Suppl:S15-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012 Nov 08;5:625</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23134977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Sep;7(9):405-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12234732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2012 Aug;31(8):1393-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22476437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2010 Nov;51(11):1821-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20980270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 9;110(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Oct;8(10):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Dec;36(5):602-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 May;42(5):462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11382811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):1015-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20018603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3594-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jun;233(6):1237-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21336597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2009 Jan 16;378(3):483-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3985-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2009 Sep 15;166(14):1544-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19464753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1675-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jan;22(1):221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Jun;188-189:48-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22525244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2008 Jul;7(4):264-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18632743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Mar;7(3):106-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11906833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 May;23(7):481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12670802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):691-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jul 21;23(14):2872-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15215895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2005 Feb;10(2):63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15708343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 May;20(5):735-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12679534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Dec 14;425(1):27-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20001960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):251-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Aug;150(4):1648-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Mar;8(3):489-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8721751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Silence. 2010 Jul 12;1(1):15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20624295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):12168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Oct 15;20(20):5556-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11597999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Aug 17;406(6797):731-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Sep;21(9):2624-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19794114</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Qingqing" sort="Chen, Qingqing" uniqKey="Chen Q" first="Qingqing" last="Chen">Qingqing Chen</name>
<name sortKey="Ci, Dong" sort="Ci, Dong" uniqKey="Ci D" first="Dong" last="Ci">Dong Ci</name>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Song, Yuepeng" sort="Song, Yuepeng" uniqKey="Song Y" first="Yuepeng" last="Song">Yuepeng Song</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002442 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002442 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23652820
   |texte=   Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23652820" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020